Безопасность остекления гарантирует печь термического тестирования стекла

Содержание

Какую температуру выдерживает обычное стекло

Безопасность остекления гарантирует печь термического тестирования стекла

Кварцевое стекло получают плавлением кремнезёмистого сырья высокой чистоты. Кварцевое стекло состоит из диоксида кремния SiO2 и является самым термостойким стеклом: коэффициент его линейного расширения в пределах 0 — 1000 °С составляет всего 6х10-7. Поэтому раскаленное кварцевое стекло, опущенное в холодную воду, не растрескивается.

Температура размягчения кварцевого стекла, при которой достигается динамическая вязкость 107 Пуаз (10 Пахс) равна 1250 °С. При отсутствии значительных перепадов давления кварцевые изделия можно применять до этой температуры. Полное же плавление кварцевого стекла, когда из него можно изготавливать изделия, наступает при 1500-1600 °С.

Известно два сорта кварцевого стекла: прозрачный кварц и молочно-матовый.

Мутность последнего вызвана обилием мельчайших пузырьков воздуха, которые при плавке стекла не могут быть удалены из-за высокой вязкости расплава.

Изделия из мутного кварцевого стекла обладают почти такими же свойствами, как и изделия из прозрачного кварца, за исключением оптических свойств и большей газовой проницаемости.

Поверхность кварцевого стекла обладает незначительной адсорбционной способностью к различным газам и влаге, но имеет наибольшую газопроницаемость среди всех стекол при повышенной температуре. Например, через кварцевую трубку со стенками толщиной в 1 мм и поверхностью 100 см2 при 750 °С за один час проникает 0,1 см3 Н2, если перепад давлений составляет 1 атм (0,1 МПа).

Кварцевое стекло следует тщательно предохранять от всяких загрязнений, даже таких как жирные следы от рук. Перед нагреванием кварцевого стекла имеющиеся на нем непрозрачные пятна снимают при помощи разбавленной фтороводородной кислоты, а жировые — этанолом или ацетоном.

Кварцевое стекло устойчиво в среде всех кислот, кроме HF и Н3РO4. На него не действуют до 1200 °С С12 и НСl, до 250 °С сухой F2. Нейтральные водные растворы NaF и SiF4 разрушают кварцевое стекло при нагревании. Оно совершенно непригодно для работ с водными растворами и расплавами гидроксидов щелочных металлов.

Кварцевое стекло при высокой температуре сохраняет свои электроизоляционные свойства. Его удельное электрическое сопротивление при 1000 °С равно 106 Омхсм.

Обычное стекло

К обычным стеклам относятся известково-натриевое, известково-калиевое, известково-натриево-калиевое.

Известково-натриевое (содовое), или натрий-кальций-магний-силикатное, стекло применяют для выработки оконных стекол, стеклотары, столовой посуды.

Известково-калиевое (поташное), или калий-кальций-магний-силикатное, стекло обладает более высокой термостойкостью, повышенным блеском и прозрачностью; используется для выработки высококачественной посуды.

Известково-натриево-калиевое (содово-поташное), или натрий-калий-кальций-магний-силикатное, стекло имеет повышенную химическую стойкость, благодаря смешению окислов натрия и калия; наиболее распространено в производстве посуды.

Боросиликатное стекло

Стекла с высоким содержанием SiO2, низким – щелочного металла и значительным – оксида бора B2O3 называются боросиликатными. Борный ангидрид действует как флюс для кремнезема, так что содержание щелочного металла в шихте может быть резко уменьшено без чрезмерного повышения температуры расплавления.

В 1915 фирма Корнинг гласс уоркс начала производить первые боросиликатные стекла под торговым названием Пирекс. Стекло марки Пирекс является боросиликатным стеклом с содержанием не менее 80% SiO2, 12-13% В2O3, 3-4% Na2О и 1-2% Аl2О3.

Оно известно под разными названиями: Корнинг (США), Дюран 50, Йенское стекло G20 (Германия), Гизиль, Монекс (Англия), ТС (Россия), Совирель (Франция), Симакс (Чехия).

В зависимости от конкретного состава стойкость к термоудару таких стекол в 2–5 раз выше, чем у известковых или свинцовых; они обычно намного превосходят другие стекла по химической стойкости и имеют свойства, полезные для применения в электротехнике.

Температура размягчения стекла «пирекс» до динамической вязкости в 1011 пуаз (1010 Пас) составляет 580-590 °С. Тем не менее стекло пригодно для работ при температурах до 800 °С, но без избыточного давления.

При использовании вакуума температуру изделий из стекла «пирекс» не следует поднимать выше 650 °С. В отличие от кварцевого стекло «пирекс» до 600 °С практически непроницаемо для Н2, Не, O2 и N2.

Фтороводородная и нагретая фосфорная кислоты, так же как и водные растворы (даже 5%-ные) КОН и NaOH, а тем более их расплавы, разрушают стекло «пирекс».

Хрустальное стекло

Хрустальные стекла (хрусталь) — высокосортные стекла, обладающие особым блеском и способностью сильно преломлять свет. Различают свинцовосодержащие и бессвинцовые хрустальные стекла.

Свинцовосодержащие хрустальные стекла — свинцово-калиевые стекла, вырабатывают с добавлением окисu001fлов свинца, бора и цинка.

Характеризуются повышенu001fным весом, красивой игрой света, мелодичным звуком при ударе; применяют для производства высококачестu001fвенной посуды и декоративных изделий.

Наибольшее применение имеет хрусталь с содержанием от 18 до 24% окислов свинца и 14—16,5% окиси калия (легu001fкий).

К бессвинцовым хрустальным стеклам относятся баритовое, лантановое и др.

Баритовое стекло содержит повышенное количество окиси бария. Обладает лучшим блеском, более высоu001fкой светопреломляемостью и удельным весом по сравu001fнению с обычными стеклами, применяют как оптиu001fческое и специальное стекло.

Лантановое стекло содержит окись лантана La2О3 и лантаниды (соединения лантана с алюминием, медью и др.). La2О3 повышает светопреломление. Отличается высоким качеством; применяется как оптическое.

Свойства стекла

Плотность стекла зависит от его химического состава. Плотность — отношение массы стекла при данной температуре к его объему, зависит от состава стекла (чем больше содержание тяжелых металлов, тем стекло плотнее), от характера термической обработки и колеблется в пределах от 2 до 6 (г/см3). Плотность — постоянная величина, зная ее, можно судить о составе стекла.

Наименьшей плотностью обладает кварцевое стекло — от 2 до 2,1 (г/см3), боросиликатное стекло имеет плотность 2,23 г/см3, наибольшей — оптические стекла с высоким содержанием окислов свинца — до 6 (г/см3). Плотность известково-натриевого стекла составляет около 2,5 г/см3, хрустального — 3 (г/см3) и выше.

Табличным значением плотности стекла является диапазон от 2,4 до 2,8 г/см3.

Прочность. Прочностью называется способность материала сопротивляться внутренним напряжениям, возникающим в результате действия внешних нагрузок. Прочность характеризуется пределом прочности. Предел прочности на сжатие для различных видов стекла колеблется от 50 до 200 кгс/мм2. На прочность стекла оказывает влияние его химический состав.

Так, окислы СаО и B2O3 значительно повышают прочность, РbО и Al2O3 в меньшей степени, MgO, ZnO и Fe2O3 почти не изменяют ее. Из механических свойств стекол прочность на растяжение является одним из важнейших. Объясняется это тем, что стекло работает на растяжение хуже, чем на сжатие. Обычно прочность стекла на растяжение составляет 3,5—10 кгс/мм2, т. е. в 15—20 раз меньше, чем на сжатие.

Химический состав влияет на прочность стекла при растяжении примерно так же, как и на прочность при сжатии.

Твердость стекла, как и многие другие свойства, зависит от примесей. По шкале Мооса она составляет 6-7 ед, что находится между твёрдостью апатита и кварца. Твердость различных видов стекла зависит от его химического состава.

Увеличение содержания щелочных окислов и окислов свинца снижает твердость; наименьшей твердостью обладает свинцовый хрусталь.

Хрупкость — свойство стекла разрушаться под действием ударной нагрузки без пластической деформации. Сопротивление стекла удару зависит не только от его толщины, но и от формы изделия, наименее устойчивы к удару изделия плоской формы. Для повышения прочности к удару в состав стекла вводят окислы магния, алюминия и борный ангидрид.

Неоднородность стекломассы, наличие дефектов (камней, кристаллизации и других) резко повышают хрупкость. Сопротивление стекла удару увеличивается при его отжиге.

В области относительно низких температур (ниже температуры плавления) стекло разрушается от механического воздействия без заметной пластической деформации и, таким образом, относится к идеально хрупким материалам (наряду с алмазом и кварцем). Данное свойство может быть отражено удельной ударной вязкостью.

Как и в предыдущих случаях, изменение химического состава позволяет регулировать и это свойство: например, введение брома повышает прочность на удар почти вдвое. Для силикатных стекол ударная вязкость составляет от 1,5 до 2 кН/м, что в 100 раз уступает железу.

На хрупкость, стекол влияют однородность, конфигурация и толщина изделий: чем меньше посторонних включений в стекле, чем более оно однородно, тем выше его хрупкость. Хрупкость стекол практически не зависит от состава. При увеличении в составе стекол B2O3, SiO2, Al2O3, ZrO2, MgO хрупкость незначительно понижается.

Прозрачность – одно из важнейших оптических свойств стекла. Определяется отношением количества прошедших через стекло лучей ко всему световому потоку. Зависит от состава стекла, обработки его поверхности, толщины и других показателей. При наличии примесей окиси железа прозрачность уменьшается.

Термостойкость стекла характеризуется его способностью выдерживать, не разрушаясь, резкие изменения температуры и является важным показателем качества стекла.

Зависит от теплопроводности, коэффициента термического расширения и толщины стекла, формы и размеров изделия, обработки поверхности, состава стекла, дефектов. Термостойкость тем выше, чем выше теплопроводность и ниже коэффициент термического расширения и теплоемкость стекла.

Термошок. Определение, причины возникновения и как избежать

Безопасность остекления гарантирует печь термического тестирования стекла

Вам установили новые окна и к качеству материалов и работ нет нареканий. Все замечательно. Но в один прекрасный момент вы внезапно обнаруживаете трещину на стекле, хотя абсолютно уверены, что никаких механических повреждений просто не могло быть в этом месте. Что это? Мистика?

Вовсе нет. Вполне вероятно, что в вашем случае имеет место быть такое явление как термошок – самопроизвольное разрушение стекла при тепловом воздействии.

Для начала разберемся, как точно определить: термошок это или иное физико-механическое воздействие. Это необходимо для последующего корректного решения данной проблемы и избежания рецидива.

Основные признаки термошока

Линия трещины стекла начинается от самого края и перпендикулярна как плоскости стекла, так и его краю (торцу). То есть начало разлома выходит от края строго под углом 90 град. Это можно наглядно определить, сняв штапик и осмотрев дефект со всех сторон. А вот дальнейшее растрескивание зачастую имеет множество лучей. Некоторые из них довольно изогнутой формы.

Поэтому в первую очередь нужно внимательно обследовать край стеклопакета на участке возникновения трещины, ее начала. И если угол не 90 град. – с высокой долей вероятности можно утверждать, что это не термошок.

И в целом трещины, возникающие по причине термошока, имеют характерный внешний вид (см.фото).

Далее разберемся, почему может случится так, что в один прекрасный момент стекло в окне может самопроизвольно разрушиться.

Причины возникновения термошока

Причина данного явления – наличие градиента (разных значений) температур из-за того, что какая-то часть стекла оказалась более нагретой по отношению к другой. То есть мы имеем стекло, участки которого имеют различную степень нагрева. А разная степень нагрева в свою очередь приводит к различной степени расширения стекла. И в результате возникают напряжения, приводящие к разрушению.

Такое явление как термошок, мы можем наблюдать в повседневной жизни довольно часто.

К примеру, когда в стеклянный стакан резко налить кипяток – он скорее всего лопнет. Или в сезон заготовок и закаток банки перед стерилизацией (кипячение в воде) обязательно прогревают, чтобы они не треснули. Т.е.

не допускают возникновения критической разницы значений температуры, приводящей к саморазрушению стекла. А когда в бокал с напитком комнатной температуры вы помещаете кубики льда. Порой отчётливо слышно и видно, как лёд трескается.

В данной ситуации происходит тепловой удар, так как температура наружной поверхности льда растёт быстрее, нежели внутренняя. Внешний слой расширяется при нагревании, а внутренняя часть остается практически неизменной.

Такое быстрое изменение объема между различными слоями создает напряжение в кусочке льда. Оно накапливается до тех пор, пока сила напряжения не превысит силу льда, и в итоге образуется трещина.

Ещё один яркий пример – лампы накаливания. Если они поработали и достаточно нагрелись, и в этот момент их взбрызнуть холодной водой – стекло лопнет.

Тоже самое может произойти и со стеклом в оконной раме. Когда летом на даче Вы решите полить газон. Будьте предельно осторожны, чтобы холодные капли воды не попали на разогретое стекло в окне. Так как высок риск того, что стекло может разрушится.

Довольно редко, но такое явление может случится и в городской среде. Когда в солнечный день стекло сильно разогревается и внезапно начинается дождь, если температура капель дождя будет достаточно низкой, это также может привести к саморазрушению стекла.

Существует ряд основных факторов, которые могут привести к саморазрушению стекла под тепловым воздействием:

– падающая тень, когда одна часть стеклопакета оказывается в зоне солнечного нагрева, а другая – в тени (холодный участок);

– использование в стеклопакете окрашенного в массе стекла, стекла с тонирующими плёнками;

– наличие зоны, из которой не отводится избыточное тепло. Это очень частая причина во время проведения ремонтных и отделочных работ в помещении. Окна как правило защищают и оклеивают пленкой, тем самым не давая разогретому воздуху выйти.

В результате в определенных зонах стеклопакета может возникнуть критически высокая температура.

Поэтому обязательно оставляйте отверстия для вентиляции и не используйте тёмные и цветные плёнки, предпочтительны варианты прозрачного характера;

– ориентация и наклон элементов остекления;

– качество реза и обработки кромки стекла, его толщина;

– климатические параметры: время года, климатическая зона. Очень часто термошок случается ранней весной и осенью, когда ночи холодные и стёкла достаточно охлаждены, а солнечные лучи утром хорошо нагревают поверхность стекла;

– рольшторы, шторы, портьеры, жалюзи на окне, особенно светлых тонов;

– наличие в стеклопакете двух и более стекол с низкоэмисионным покрытием;

– крупные светлые предметы, находящиеся в особенной близости к поверхности стекла;

Все эти факторы могут спровоцировать риск возникновения термошока.

Для сведения: самопроизвольное разрушение стекла при тепловом воздействии не является гарантийным случаем!

Во избежание столкновения с данной проблемой следует внимательно отнестись к проектированию остекления, руководствоваться требованиями и рекомендациями ГОСТ 24866-2014 «Стеклопакеты клееные. Технические условия». В случае возникновения рисков применяйте закалённое стекло. Оно безопасно и не подвержено разрушению от перепада температур.

Противопожарные стекла: типы, испытание, применение, плюсы и минусы

Безопасность остекления гарантирует печь термического тестирования стекла

/ Статьи / Противопожарные преграды

С давних пор слова стекло/стеклянный ассоциируется с чем-то хрупким, легко бьющимся от удара или падения. Предостерегающие надписи о необходимости осторожного, бережного отношения на трафаретах/наклейках сопровождают груз готовой продукции, предметов обихода из этого прозрачного, твердого материала.

Довольно долго это в полной мере относилось и к листовой форме, используемой прежде всего при производстве окон, остеклении дверей, фрамуг/форточек, а также ограждений, перегородок внутри помещений. Правда, в последнем случае использовались листы большей толщины, что делало их более прочными, но все же разбивающимися при сильном механическом воздействии.

Новые требования к этому материалу – от стойкости к удару/проникновению до способности выдерживать попадание пули появились в прошлом столетии, когда строительный бум, воплощение в реальность задумок архитекторов, дизайнеров по возведению высотных зданий, остекленных снаружи по всей площади от фундамента до кровли; устройству атриумов, внутренних перегородок в административных, офисных зданиях, торгово-выставочных, музейных комплексах, поставили перед учеными химиками, стеклодувами задачу изменить саму природу, физическую сущность этого прозрачного материала, которая была решена.

С точки зрения обеспечения пожарной безопасности, виды специального огнестойкого материала, применяемого для остекления противопожарных окон, вставок в противопожарных воротах, дверях, редко в конструкциях зенитных фонарей, противопожарных люков, кардинально отличаются от обычного; хотя и те стеклопакеты, что идут для изготовления широко распространенных пластиковых окон легко разбить уже не получиться.

В чрезвычайных ситуациях возникновения очага открытого огня, распространения пламени, нарастании теплового воздействия в пределах пожарного отсека, секции, огнестойкие стекла, используемые в заполнении строительных проемов, эффективно сдерживают эти опасные факторы для людей, находящихся в смежных помещениях; выдерживая все нагрузки с пределом стойкости, присущим противопожарным преградам из камня, кирпича, железобетонных конструкций.

 Дополнительно рекомендуем материал по теме: 

Противопожарные преграды в зданиях

Виды (типы) огнестойких стекол

По широко распространенному мнению о конструкции противопожарных огнестойких (огнеупорных, жаропрочных) стекол, принято считать, что это обязательно наличие многослойного пакета листов стекла с пленкой из термостойкого материала между ними. Это не так, на самом деле, существует разная конструкция стекол, что определяет и производство разных видов/типов такой продукции:

  • Закаленное монолитное натрий/кальций/боросиликатное стекло, в прямом смысле этого выражения уже прошедшее в заводских условиях испытание огнем.
  • Армированное противопожарное стекло с металлической сеткой внутри листового материала, прочно удерживающей всю конструкцию внутри рамы длительное время.
  • Многослойный пакет из закаленного стекла с заполнением между листами огнезащитными лаками, аналогичными по свойствам материалам, используемым при пассивной огнезащите строительных конструкций, вспучивающимся, коксующими/обугливающимся под тепловым воздействием высокой температуры пожара. Становясь непрозрачным, эти чередующиеся слои один за другим препятствуют распространению открытого огня, вплоть до потери целостности последнего такого сэндвича, что происходит нескоро, укладываясь в нормативные сроки по огнестойкости.
  • Многослойное закаленное стекло с пространством между листами, заполненным прозрачным полимерным многокомпонентным гелем на водной основе, вспенивающемся/вскипающим, поглощая тепло от воздействия высокой температуры/открытого огня, а затем кристаллизующимся/спекающимся в огнеупорную теплоизоляционную массу.
  • Монолитная стеклокерамика. Это наиболее редкий и дорогой вид огнестойких стекол из материала с практически нулевым показателем термического расширения, что обеспечивает ему целостность при интенсивном тепловом воздействии. Это не удивительно, ведь процесс производства изделий из стеклокерамики, в т.ч. листовых, происходит при температурах выше, чем во время пожара в помещениях.

Не следует забывать, что противопожарное огнестойкое стекло, кроме конструктивных особенностей/различий, подразделяется на виды по способности не разрушаться (Е), не нагреваться до предельных значений на необогреваемой поверхности (I), не передавать тепловое воздействие в смежное помещение (W):

  • Огнестойкое стекло EIW 60 по всем трем параметрам способно в течение одного часа выдерживать воздействие открытого пламени, интенсивного теплового потока от очага пожара, находящегося в защищаемом помещении.
  • Противопожарные стекла EI 60 обеспечат только первые две характеристики, кроме того, что воздух за ними в смежных помещениях сможет прогреться до критических значений – более 3, 5 кВт/м2.
  • Стекло противопожарное EI 30 – то же в течение получаса.

Кроме того, стекло противопожарное, ГОСТ 33000-2014, определяющий методы испытаний изделий из стекла на стойкость к огневому воздействию, с маркировкой EI, REI, где R – это потеря несущих свойств, относит к изолирующему; а с обозначениями REW, EW – к не изолирующему стеклу.

Кроме высокого коэффициента пропускания света, достигающего 0, 85, огнестойкости, теплозвукоизоляционных свойств, ударопрочности для противопожарных стекол важны также требования безопасности; прежде всего способность разрушаться без образования осколков, подобно лобовому стеклу автомашин, чем характеризуются прежде всего армированные изделия, хотя многослойная конструкция других видов противопожарных стекол также подобна триплексу.

Дополнительная информация в видео: (8 минута)

Нормативные документы

Те документы, что непосредственно относятся ко всем разновидностям противопожарных огнестойких стекол, способам их применения в качестве заполнения проемов в преградах огню, а также к установке противопожарных перегородок из них:

  • 123-ФЗ «Тех. регламент о требованиях ПБ».
  • СНиП 21-01-97*(СП 112.13330.2011) о ПБ зданий, сооружений.
  • ГОСТ 32539-2013, дающий следующее определение огнестойким стеклам – это изделия, способные в нормированный период выдержать тепловые, механические нагрузки, сопровождающие развитие пожара; локализовать/ограничить распространение огня, продуктов процесса горения.
  • ГОСТ 30826-2014, устанавливающий технические условия к защитным многослойным стеклам.
  • ГОСТ Р 53308-2009, регламентирующий методику испытания огнестойкости светопрозрачных конструкций.

Конечно, это далеко не полный список норм/правил ПБ, где в той или иной мере упоминается противопожарное стекло, используемое при конструировании, установке в качестве противопожарных преград или заполнения проемов в них.

Применение на объектах

Прежде всего нужно знать, что огнестойкие стекла EI, EIW 60 могут использоваться как материал для устройства противопожарных перегородок 1 типа, так и в конструкциях заполнения проемов 1 типа; а огнеупорные изделия с маркировкой EI 30 – в перегородках, воротах, дверях, люках, окнах 2 типа следующим образом:

  • Противопожарные двери могут иметь оконные вставки из жаропрочного стекла, варьирующие по нормативной площади до 25 и больше 25%, причем в последнем случае они могут быть практически полностью стеклянными, лишь обрамленными в каркас из термически стойкого алюминиевого профиля с негорючим наполнителем, например, из огнезащитного базальтового материала; иметь плотный/герметичный притвор по периметру дверной коробки из таких же материалов.
  • Противопожарные перегородки из огнестойкого стекла широко используются при отделении/выделении эвакуационных коридоров, вестибюлей, фойе, внутренних входных групп/тамбуров; разделении площади этажей зданий на противопожарные секции, отдельные/изолированные помещения/их группы.
  • В качестве пропускающих свет элементов покрытий/кровель, зенитных фонарей, в редких случаях даже перекрытий/полов.
  • Для остекления фасадов, при производстве любых видов заполнения проемов в строительных преградах огню.
  • При устройстве каминов, печей, производстве электрических/газовых бытовых плит.

Использование такого материала, кроме прагматичного отношения к нему, из-за способности противостоять огня/теплу, преследует и эстетические цели; ведь замена перегородок из кирпича, огнестойкого гипсокартона, глухих противопожарных дверей на прозрачные, привлекательного вида стеклянные поверхности сегодня стала обычной не только в общественных зданиях с массовым посещением людей – в аэропортах, вокзалах, гостиничных, больничных комплексах, торгово-выставочных, административных, деловых центрах, но и на промышленных объектах.

Плюсы и минусы использования

Главное преимущество огнестойких стекол, что это надежная замена традиционным материалам для создания внутренних преград открытому огню, распространяющимся потокам дыма, тепла в зданиях, сооружениях. Противопожарные перегородки, двери из стекла сегодня стали привычны.

Кроме того, с их установкой, использованием можно успешно решить следующие задачи:

  • Отделить от смежных офисных, административных, производственных, складских помещений с наличием пожарной нагрузки эвакуационные пути и выходы, обеспечив возможность людям безопасно покинуть здание. Причем если нет сильного задымления, смонтированы/работают системы дымоудаления, то и в условиях естественного освещения.
  • Перегородки, окна из огнестойкого стекла, вставки из него в дверях, воротах не только сдерживают возможное распространение пожара, но и из-за хорошего визуального контроля помещений со стороны работников в дневное время, дежурного персонала, сотрудников службы охраны ночью позволяют оперативно, вовремя обнаружить признаки возгорания, сообщить об этом, используя ручные пожарные извещатели АПС, включить стационарные системы пожаротушения.

К недостаткам можно отнести большую массу конструкций из противопожарного стекла, обусловленную его толщиной при многослойном варианте производства, а также немалую стоимость за 1 м2.

Порядок испытания

Противопожарное стекло, за исключением армированного, в нашей стране производят не так давно. До сих пор на российском рынке как в качестве листового материала, так и в составе противопожарных дверей/окон много импортной продукции, но появилось и российское закаленное, многослойное огнестойкое стекло, с пределом стойкости к огню 30/60 мин.

Определенных, утвержденных государством, документов – ГОСТ, регламентов на технологию производства, требований к комплектующим сегодня нет. Каждое производственное предприятие разрабатывает свои технические условия, которые являются основанием для серийного производства после практических испытаний образцов изделий, получения сертификата ПБ на продукцию.

Испытания по ГОСТ 33000-2014 заключаются в том, что образцы стеклянных изделий от каждого производителя, направившего их для получения сертификата соответствия требованиям ПБ в аккредитованную лабораторию, подвергаются регламентному тепловому, механическому воздействию.

В ходе этих испытаний по периоду, за который они достигают критического состояния по разным параметрам, определяют пределы стойкости к огню, теплоизоляционные свойства готовой продукции. Оборудование – испытательная печь, в которой на специальной раме устанавливают образцы противопожарных стекол, термопары, контрольно-измерительная аппаратура/приборы.

Безопасное стекло – что это и почему оно безопасно

Безопасность остекления гарантирует печь термического тестирования стекла

Защитное остекление от Компании ФОТОТЕХ включает светопрозрачные внешние и внутренние конструкции с использованием стекол безопасных при эксплуатации, ударостойких, взломостойких и пулестойких композиционных стекол.

Защитные светопрозрачные конструкции из безопасного стекла в зависимости от класса могут временно препятствовать умышленному пробиванию отверстия в остеклении, выдержать удар брошенного камня, бутылки с зажигательной смесью и даже выстрел нарезного огнестрельного оружия. Изготавливаются такие конструкции на базе каркаса из алюминиевого или стального профиля и специализированного светопрозрачного заполнения соответствующего класса.

Безопасное стекло — это общее наименование для закаленного и термоупрочненного стекла, строительного триплекса и многослойного стекла, а также стекла с защитной полимерной пленкой, которые обладают различными прочностными характеристиками и свойствами безопасности.

Безопасное стекло используют в светопрозрачных конструкциях, где возможно неожиданное столкновение человека с ними (например, с дверью, перегородкой, витриной и т.д.).

В настоящее время в качестве стекол безопасных при эксплуатации применяются в основном следующие виды стекол:

  • строительный триплекс (по ГОСТ 30826-2014 «Стекло многослойное. Технические условия»);
  • стекло с защитной полимерной пленкой (по ГОСТ 32563-2013 «Стекло с полимерными пленками. Технические условия»);
  • закаленное стекло (по ГОСТ 30698-2014 «Стекло закаленное. Технические условия»);
  • условно-безопасное(!) термоупрочненное стекло (по ГОСТ 33087-2014 «Стекло термоупрочненное. Технические условия»).

1. Ламинированное или триплекс-стекло

Стекло-триплекс представляет собой два листовых стекла, скрепленных полимерной композицией. Существует две основных технологии изготовления триплекса: пленочная и заливная.

а) При использовании пленочной технологии между листами стекла располагается поливинилбутиральная (ПВБ) или этиленвинилацетатная (EVA) пленка, затем в автоклаве происходит склеивание этой композиции.

б) При использовании заливной технологии между листами стекла помещается не полимерная пленка, а заливается жидкий полимер (гель), затем происходит его полимеризация под действием ультрафиолетового облучения, протекания химических реакций или под воздействием температуры (в зависимости от вида используемого полимера, чаще всего на практике — под воздействием UV-облучения).

Общим фактором безопасности всех типов триплекса является то, что осколки стекла при его разрушении не разлетаются, а остаются на внутреннем слое пленки/геля (например, автомобильные лобовые стекла).

Дополнительный бонус триплекс-стекла — высокая шумозащита.

Этому способствуют две ключевые особенности триплекса — увеличенная толщина (6, 8 и более мм) и наличие пленки (или полимера) между слоями стекла, которая выполняет роль «звуковой амортизации».

Применяемые пленки и гели в составе триплекса могут иметь различную звукоизолирующую эффективность: 2-камерный стеклопакет с наиболее эффективным триплексом обеспечивает звукоизоляцию на уровне 46 дБ!

Такой стеклопакет позволяет эффективно бороться с шумами даже в условиях близко расположенных промышленных зон и взлетно-посадочных полос.

Кроме того, разбитый триплекс продолжает выполнять ограждающую функцию до момента замены стеклопакета, что также увеличивает комфорт для потребителя.

2. Стекла с защитной пленкой

Согласно ГОСТ 32539-2013 «Стекло и изделия из него. Термины и определения», стекло с полимерной пленкой (стекло с пленкой): базовое стекло, на поверхность которого наклеена полимерная пленка, придающая стеклу новые свойства.

Стекла с защитной пленкой представляют собой листовое стекло, на которое наклеена специальная особо прочная полимерная пленка.

Поскольку пленка обладает высокой механической прочностью и создает небольшое напряжение сжатия в стекле после высыхания, стекло с пленкой прочнее обычного листового стекла, но основной смысл применения пленки состоит в том, что она удерживает осколки стекла при его механическом или термическом разрушении. Защитные пленки устойчивы к механическим повреждениям и успешно выполняют функцию упрочнения стекла во всех случаях разрушающего воздействия на него. Прочность пленок на разрыв достигает 24 кг/мм2 (сталь — до 27 кг/мм2), а удлинение при разрыве до 170% (сталь — всего 2-3%). Стекло с защитной пленкой способно задержать вора на 10-15 минут, предоставляя службам охраны возможность отреагировать на сигнал тревоги, предотвратить либо оперативно раскрыть преступление.

Защитные пленки класса А1 имеют толщину в 240 — 380 микрон и выдерживают энергию удара до 141 Дж, защитные пленки класса А2 имеют толщину 412 — 490 микрон и способны выдержать энергию удара до 262 Дж, пленки класса А3 имеют толщину 550 — 700 микрон и выдерживают энергию удара до 382 Дж.

К минусам стоит отнести то, что химическая стойкость защитной пленки, а также её стойкость к истиранию существенно ниже, чем листового стекла, поэтому поверхность стекла с пленкой крайне желательно располагать так, чтобы на нее не было химических, механических и абразивных воздействий (пленкой внутрь стеклопакета).

3. Закаленное стекло

Закаленное стекло представляет собой листовое стекло, подвергнутое специальной термической обработке (650—680 °C с последующим быстрым равномерным охлаждением холодным воздухом с обеих сторон) с целью создания заданного распределения напряжений по объему стекла.

Это приводит к тому, что значительно (в 5-10 раз) возрастает прочность стекла на удар, возрастает в 2-3 раза прочность стекла на изгиб, возрастает в 3-4 раза термостойкость стекла (с 40 до 180°C).

При превышении предела прочности все стекло распадается на мелкие и травмобезопасные фракции (размерами от 1 до 10 мм) с тупыми гранями, т.е. осколки стекла при его разрушении осыпаются безопасными кусочками.

О его безопасности говорит тот факт, что закаленное стеклянное полотно активно используется при оформлении интерьеров, изготовлении полов, ступеней лестниц и т.д., а также то, что автомобильные боковые и задние стекла изготавливаются именно из закаленного стекла.

Закаленное стекло обладает наиболее высокой термостойкостью, устойчивостью к значительным механическим нагрузкам, ударам и деформациям.

Благодаря монолитной структуре закаленное стекло в сравнении с триплексом и стеклом с пленкой обладает более высоким коэффициентом пропускания света и вносит меньше оптических искажений (однако уступает по этим показателям обычному листовому стеклу).

Для закаленного стекла опаснее, чем для других стекол, процессы коррозии под воздействием влаги (так называемое выщелачивание стекла): возможно разрушение стекла в результате длительной коррозии поверхностного слоя (нарушается баланс напряжений в стекле). Опасность представляет также абразивное воздействие на стекло.

4. Термоупрочненное стекло (условно безопасное)

Согласно ГОСТ 32539-2013 «Стекло и изделия из него. Термины и определения», термоупрочненное стекло: Упрочненное стекло, полученное путем нагрева и последующего охлаждения базового стекла, имеющее характерный (лучевой), но не безопасный, характер разрушения.

Термоупрочненные и закаленные стекла производятся с использованием похожих технологических процессов на однотипном оборудовании.

Стекла отличаются только уровнем напряжения в них, которое создается в процессе производства.

Прочность на изгиб и устойчивость к термошоку у термоупрочненного стекла существенно больше, чем у простого стекла, но меньше, чем у закаленного, так как в процессе термоупрочнения стекло охлаждается медленнее.

На практике разница выражается в том, что в отличие от закаленного, термоупрочненное стекло разбивается на крупные куски в виде «шпаг», которые идут от эпицентра разрушений.

Данный характер разрушения стекла позволяет большей части осколков оставаться в раме.

Эта особенность позволяет назвать стекло лишь условно безопасным при разрушении, однако термоупрочнение эффективно помогает справиться с перепадами температур и ветровыми нагрузками.

Важно иметь в виду, что термоупрочнение (как и закалка) ведут к небольшим оптическим искажениям: их можно минимизировать, но нельзя полностью избежать. Следует также помнить, что такое стекло нельзя сверлить или резать, гравировать или обрабатывать пескоструйным методом: лист стекла может быть разрушен.

Компания ФОТОТЕХ по доступным ценам обеспечит безопасность объекта, изготовив и установив безопасный стеклопакет, включающий любые типы защитного стекла с повышенными прочностными характеристиками, свойствами безопасности и в любых сочетаниях с другими специальными стеклами.

Противоударные стеклопакеты: безопасные и ударостойкие стекла

Безопасность остекления гарантирует печь термического тестирования стекла

Стеклопакет – это конструкция из нескольких стекол. Для достижения высокой степени безопасности в стеклопакет устанавливают не обычные стекла, а специальные, защитные.

Типов защитных стекол много: одни усиливаются за счет поклейки специальной пленки, другие – за счет закаливания. Независимо от типа изготовления, выглядит “защитное стекло” в стеклопакете примерно одинаково. Отличить защитное стекло от обычного невозможно, за исключением тех случаев, когда на него нанесена маркировка – несмываемый “лэйбл”, указывающего на его степень защиты .

Варианты защитных стекол по степени защиты

Различают следующие типы защитных стекол (в порядке увеличения защитных свойств):

  • Стекло безопасное при эксплуатации
  • Стекло ударостойкое
  • Стекло устойчивое к пробиванию (бронированное)
  • Стекло взрывостойкое и пулестойкое

Защитные стекла в пластиковых окнах

В производстве безопасных противовзломных пластиковых окон используются чаще всего противоударные стекла и стеклопакеты. Стекла более высоких степеней защиты – пулестойкое и бронированное – относятся к стеклам специального назначения и используются в комплексе с цельностальной рамой.

Пулестойкое стекло устанавливается при возможной угрозе вооруженного нападения на персонал или посетителей.

Бронированные и устойчивые к пробиванию стекла устанавливаются на объектах без централизованной охраны, имеющих материальные ценности, например, в банках, в музеях. При наличие охраны применяются ударостойкие стекла класса А1-А3.

1 Класс: Безопасное стекло при эксплуатации

Стекло, при разрушении которого не образуется крупных осколков (закаленное безопасное стекло), либо осколки удерживаются полимерной пленкой (многослойное безопасное стекло) называется безопасным в обращении. К числу таких стекол относится стекло триплекс (многослойное стекло с ПВБ пленкой между двумя листами стекла) и закаленное стекло.

Стремясь к эффективной защите без острых (опасных) осколков учтите, что безопасное стекло не гарантирует защиту от разбития, оно лишь обеспечивает более высокую степень устойчивости стекла к физическим воздействиям.

Испытания

Тестируется такое стекло на прочность одним из способов: ударами мешком с мягким стальным ломом (дробь) весом 45 кг (класс СМ); ударами твердой стальной полотелой грушей весом 5-10 кг и диаметром 240 мм (класс СТ).

Классы устойчивости безопасного стекла

Класс стекла Тип конструкции Устойчивость к воздействию
СМ1 Стекло термоупрочненное менее 4 мм Падение 45 кг с высоты 20 см
СМ2 Стекло термоупрочненное 4 ммМногослойное стекло триплекс 33.1 Падение 45 кг с высоты 45 см
СМ3 Стекло термоупрочненное 5 мм и более Закаленное стекло 4 ммМногослойное стекло триплекс 44.1 Падение 45 кг с высоты 120 см
СМ4 Закаленное стекло 5 мм (и более) Многослойное стекло триплекс 44.2, 55.2, 66.2 Падение 45 кг с высоты 200 см

Определяется по:ГОСТ 30698-2014 Стекло закаленное. Технические условия

ГОСТ Р 54171-2010 Стекло многослойное. Технические условия

2 Класс: Ударостойкое стекло

К числу ударостойких стекол относятся стекла с толстой полимерной пленкой, например стекло 4 мм с защитной пленкой толщиной 300 мкм. Такое стекло способно выдержать многократный удар не только мягкого, но и твердого тела.

3 Класс: Стекло защитное, устойчивое к пробиванию

Стекло, устойчивое к пробиванию, защищает от проникновения и называется бронированным.

8 предметов бытовой техники, ломающихся просто потому, что мы не прочли инструкцию

Безопасность остекления гарантирует печь термического тестирования стекла

Чаще всего в поломке бытовой техники виновата лень, которая накатывает на нас при одном только взгляде на книжечку с инструкцией.

А ведь всего 20 минут, потраченных на чтение мануала, было бы достаточно, чтобы продлить срок эксплуатации техники на годы.

Мы составили список самых распространенных поломок бытовой техники, случающихся по вине пользователей, и подготовили советы, как их избежать.

AdMe.ru надеется, что в следующий раз инструкция не полетит в мусорное ведро вместе с упаковкой.

1. Стиральная машина

© depositphotos   © depositphotos  

  • Самая распространенная поломка в стиральных машинах — это выход из строя сливного насоса.

    Его может испортить любой мелкий мусор, выпавший из карманов, обломки металлических и пластиковых элементов декора одежды, монеты, мелкие предметы одежды, попавшие в слив.

    Поэтому обязательно проверяйте карманы перед загрузкой вещей в машинку и используйте мешки для стирки мелкого белья.

© depositphotos   © depositphotos  

  • Перегрузка стиральной машины грозит не только расшатыванием ножек из-за дисбаланса во время отжима, но и смещением или даже порчей ремня, благодаря которому крутится барабан. Впрочем, это может произойти и из-за неравномерно распределенного белья.

© depositphotos   © depositphotos  

  • Нагревательный элемент портится от перегрева из-за налета и накипи, которые появляются не только по вине жесткой воды, но и из-за слишком большого количества стирального порошка.

  • Резиновый уплотнитель дверцы изнашивается со временем. Это нормально. Но использование популярных самодельных средств для удаления накипи, содержащих уксус, ускоряет износ в разы.

    Лучше отказаться от сомнительных народных рецептов.

2. Холодильник

  • Наиболее распространенной причиной поломки холодильника до сих пор остаются горячие кастрюли с едой.

    Возможно, владельцам кажется, что современная техника выдержит все, но это не так: перегрузка компрессора грозит любой модели, даже самой современной.

  • Неправильное распределение продуктов или работа пустого холодильника без соответствующей настройки температуры охлаждения также грозит компрессору перегрузками. Всю необходимую информацию об этом можно найти в инструкции к вашей модели.

  • При разморозке холодильника всегда есть соблазн сковырнуть ножом слой льда. Не стоит этого делать, даже учитывая то, что испаритель покрыт слоем пенной изоляции: при повреждении испарителя такого типа придется менять всю морозилку.

3. Микроволновая печь

© depositphotos   © depositphotos  

  • Большая часть проблем возникает из-за несвоевременной замены слюдяной пластины. Заменить ее несложно (это можно сделать даже самостоятельно), но гораздо проще продлить срок ее эксплуатации.

    Для этого необходимо следить за чистотой и целостностью пластины и регулярно очищать ее от жира. Покрытая грязью пластина может прогореть или деформироваться от неравномерного нагрева.

  • Использование жестких губок и щеток при чистке микроволновки ведет к повреждению эмали.

    Если корпус выполнен не из нержавеющей стали, то он может довольно быстро проржаветь насквозь.

  • Все знают, что для разогрева еды в микроволновке нельзя использовать металлические емкости. Но следует помнить, что под запрет попадает и фарфоровая посуда с рисунком: любая краска может содержать металлы, которые под воздействием микроволн начинают искрить. Поэтому выбирайте керамику без орнамента.

4. Посудомоечная машина

© depositphotos   © MeHe  

  • Почти все проблемы с посудомоечной машиной происходят из-за небрежной очистки посуды от пищи перед загрузкой. Несмотря на фильтры, кусочки еды забивают не только слив, но и распылители на коромыслах.

    Из-за этого давление воды падает, и посуда практически не отмывается.

  • Жесткая вода тоже постепенно забивает отверстия в распылителях, в результате чего качество мытья посуды ухудшается.

    Поэтому не стоит экономить на специальных средствах для смягчения воды.

  • Не загружайте в машину посуду, которая не предназначена для мытья в посудомойке: она трескается от высоких температур, и осколок может попасть в сливной насос и блокировать крыльчатку. Вынуть его самостоятельно будет довольно сложно.

5. Пылесос

© depositphotos  

  • Ни в коем случае не используйте для моющего пылесоса обычное моющее средство вместо специального. У обычных средств для мытья пола неконтролируемое пенообразование, и пена, которая начнет лезть отовсюду, может попасть в мотор.

  • Обычный бытовой пылесос может работать без перерыва не больше 30–40 минут в день.

    В противном случае под воздействием высоких температур с материалом, из которого изготовлена турбина, начинают происходить необратимые изменения, что сильно сокращает срок службы турбины.

  • От сырости ржавеет металл мотора, а на лопасти налипает все больше пыли. Постепенно она собирается в тяжелый ком и затрудняет работу устройства, создавая повышенную нагрузку на пылесос.

  • Грязные фильтры и перегруженная емкость для сбора мусора также увеличивают нагрузку на прибор и негативно влияют на срок жизни турбины.

6. Кондиционер

© depositphotos   © Fedok6K  

  • Большая часть кондиционеров средней ценовой категории не приспособлена для долгой работы в режиме обогрева при зимних температурах ниже −10 °C. Такая работа повышает нагрузку на компрессор и укорачивает срок эксплуатации кондиционера. А если внешняя часть не изолирована, то конденсат в трубке смерзается в ледяную пробку, из-за которой вода начинает собираться внутри помещения.

  • Забитый пылью и мелким мусором теплообменник может стать причиной поломки кондиционера. Необходимо регулярно чистить внешний блок.

  • На крыльчатках и фильтрах кондиционера постоянно скапливаются пыль и копоть, которые уменьшают скорость потока выдуваемого воздуха, забивают дренажную систему, мешают нормальной работе охладительной системы. Это вызывает появление льда на медном трубопроводе, который при выключении кондиционера начинает таять и капать на пол.

7. Кухонные плиты

© depositphotos   © depositphotos  

  • Жидкости, содержащие сахар, не должны попадать на горячую поверхность плиты, поскольку ее неравномерное остывание приводит к появлению трещин. Подобные субстанции необходимо убирать специальным скребком сразу же, пока те не успели остыть.

  • Холодное дно кухонной утвари или капли холодной воды, оказавшиеся на горячей поверхности, тоже вызывают растрескивание стеклокерамики.

  • Неровное дно кухонной утвари часто становится причиной появления царапин или даже трещин на стеклокерамическом покрытии плит.

  • Точечные удары также могут привести к появлению трещин. Неважно, что плита запросто выдерживает вес тяжелых кастрюль: точечный удар, к примеру, металлической ложкой, может стать причиной появления трещины, которая сделает дальнейшую эксплуатацию плиты невозможной.

8. Увлажнитель воздуха

© depositphotos   © depositphotos  

  • Увлажнители воздуха нуждаются в регулярной чистке из-за минерального налета, который появляется от воды. Поэтому лучше использовать дистиллированную воду, а не водопроводную.

  • Купив увлажнитель для ароматерапии, его владельцы недоумевают, почему прибор в скором времени выходит из строя. При добавлении масла в емкость с водой портится пластик, забиваются фильтры, регулярная чистка затрудняется.

    У большинства моделей, предназначенных для ароматерапии, предусмотрена емкость для впитывающего материала, пропитанного маслом.

Бонус: поучительная история о пользе чтения инструкций

© depositphotos  

Резюмируя все вышесказанное, следует признать, что большая часть поломок происходит из-за несоблюдения правил эксплуатации техники. Это доказывает и забавный случай, произошедший в Ирландии с Майком Маклоулином (Mike Mc Loughlin).

Спустя 10 лет использования посудомоечной машины, которая раздражала его тем, что не вмещала большие тарелки, он узнал, что верхнюю полку можно сдвинуть вверх, тем самым освободив достаточно места для габаритной посуды.

Он написал о своем открытии в твиттере и получил тысячи комментариев со словами благодарности за столь полезную подсказку.

Майк рассказал, что недавно искал в гугле инструкцию по поводу другой проблемы и случайно наткнулся на информацию о полке.
Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.